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The mechanical response of the solid state of a rigid rod polymer was evaluated through the static 
deformation of atomistic models. The calculations were applied to a set of polymorphs of poly(p-phenylene 
terephthalamide) (PPTA) previously deduced by molecular mechanics analysis. A series of simulated 
deformations of the minimum energy structures was used to predict all 2l independent elements each of 
the stiffness and compliance tensors. The significance of entropic and intermolecular potential contributions, 
in addition to the intramolecular potential contributions previously considered, to the accurate estimation 
of theoretical elastic moduli in such densely packed stiff chain polymer solids was elucidated. It was found 
that chain packing and entropy, or thermal motion, both have a significant effect on the fibre tensile 
modulus, but that they are of opposite sign and partially compensate. Elastic properties of aramid fibres 
were estimated by symmetrizing the single crystal elastic tensors in the limits of uniform strain and stress 
to yield Voigt and Reuss bounds, respectively, for the elastic moduli. For one structure of PPTA (closely 
resembling the crystallographically determined modification I) the calculated extensional, transverse, and 
torsional moduli are in the ranges 220-290, 5.2-19 and 4.1-12 GPa, respectively, in good agreement with 
observed values. 
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I N T R O D U C T I O N  

Previous efforts at modelling of crystalline polymers tend 
to fall into two categories: predictions of elastic properties 
of known crystal forms, or derivation of structural and 
thermodynamic properties. For  elastic constants, it has 
been common to assume that it is the response of 
potential energy to deformation that dominates elastic 
behaviour in crystals. As early as 1967 Anand 1 applied 
the concepts of atom-based force fields to predict the 
elastic constants for a known structure of orthorhombic 
polyethylene. McCullough 2 first developed a matrix 
technique for representing crystalline assemblies of chains 
of fixed conformation, with consideration of certain chain 
defects (e.g. chain kinking or folding). Elastic constants 
in polyethylene were studied by considering potential 
energy interactions within a single chain and between 
selected nearest neighbour chains in a given orthorhombic 
assembly. However, minimization of the potential energies 
with respect to either intramolecular or intermolecular 
parameters was not attempted. Tashiro et  al.  3-5 also 
reported a method for the calculation of the three 
dimensional elastic moduli of assemblies of chains. This 
method took advantage of a priori crystal symmetries to 
expedite calculations and was applied to polyethylene 
(PE), poly(vinyl alcohol) and nylon 6. Tripathy e t  al.  6 

dealt with the prediction of crystalline packing of chain 
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molecules by minimizing the intermolecular interaction 
energies of assemblies of chains of fixed conformation 
using a formalism for the single chain which enabled the 
calculation of interactions between infinitely long chains. 
In this case, the polymers studied were PE and poly- 
(vinylidene fluoride). However, this formalism was not 
amenable to extension to three dimensions. 

More recently, Sorensen e t  al.  7"8 have incorporated 
the simultaneous minimization of packing energy with 
respect to both intramolecular conformation and inter- 
molecular packing parameters, a feature important to 
the prediction of structure at solid state densities. These 
authors went on to deduce elastic constants, using the 
second derivative matrix of potential energy with respect 
to the independent variables at the minimum energy 
configuration, and vibrational dispersion curves, from 
which the thermodynamic quantities were calculated. 
Again, application to PE and poly(oxymethylene) showed 
remarkably good agreement between calculated and 
experimental values for packing geometry and lattice 
energy, and reasonable agreement for elastic constants 
and heat capacities between 50°C and 350°C. 

Despite this considerable attention to simulations of 
flexible chain aliphatic polymers, there have been no 
reports of application of these methods to the case of 
rigid-rod polymers. Flory and co-workers 9'1° addressed 
the question of conformational energetics in p-phenylene 
polyamides and polyesters, with subsequent predictions 
of chain persistence lengths. Tashiro e t  aI. 11 also per- 
formed single chain calculations on the three relevant 
aramids, poly(p-benzamide) (PBA), poly(m-phenylene 
isophthalamide), and poly(p-phenylene terephthalamide) 
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(PPTA), in order to elucidate conformational energetics 
and tensile moduli, based on the assumption that 
intermolecular effects contribute negligibly to axial 
moduli, with reasonable success. Both groups produced 
parameterized force fields to describe the conformational 
behaviour of the isolated chain and, in the latter case, 
its response to extensional deformation. Northolt and 
van Aartsen have also applied valence force field calcu- 
lations to the estimation of axial, transverse and shear 
moduli ~2. However, in the solid state the environment is 
both conformationally constrained and densely packed. 
Under such strong opposing forces, one cannot expect 
to decouple the problems associated with the possibly 
antagonistic criteria for optimization of chain confor- 
mation and long range crystallinity regularity. It is 
especially important to recognize that intermolecular 
forces may be sufficient to induce changes in chain 
conformation and, by so doing, influence the intra- 
molecular interactions. Conflicts between conformational 
intramolecular constraining forces and crystallographic 
intermolecular constraining forces are sufficient to induce 
the formation of non-crystallographic characteristics, e.g. 
non-rational helices or helix discommensurations such 
as those proposed by Saruyama et al. 13. 

We have recently introduced an atomistic modelling 
approach for assemblies of oriented polymer chains in a 
pseudocrystalline matrix ~4. This model, though developed 
independently of that introduced earlier by Sorensen et 
al. 7 possesses many of the important features of that 
method, including the completely general description of 
chain packing in three dimensions and the simultaneous 
consideration of both intramolecular and intermolecular 
degrees of freedom. However, the current model allows 
in addition the deviation from perfect translational 
periodicity of lattice points along the chain contour and 
thus does not impose rigorous lattice crystallinity within 
the explicitly modelled region of the multichain con- 
struction. The constraint of perfect crystallinity and the 
translational periodicity of atomic positions implied 
thereby is imposed only for chains outside of the nearest 
neighbour shell surrounding the reference chain (i.e. a 
modified domain consisting of the parent chain and 
its nearest neighbours, embedded within a 'crystalline 
universe', composed of the next nearest neighbour shell 
and chains more distant from the reference chain). This 
model is especially appropriate to the description of 
polymeric solids, where the development of true crystal- 
linity over large distances may be in conflict with the 
preferred conformational behaviour of the covalently 
bonded chain contour itself, which must intersect many 
'unit cells'. We have previously presented results concern- 
ing the determination of three-dimensional structure in 
PPTA. This paper addresses the response of atomic 
structure to imposed deformation and the estimation of 
both the single crystal and the axially symmetric poly- 
crystalline elastic constant matrices for PPTA. 

THERMODYNAMIC ANALYSIS 

Classical thermodynamics of deformation 
Thermodynamic stability of structure is defined by 

minimization of the free energy with respect to the degrees 
of freedom describing the structure; as such, it is 
composed of both an internal energy contribution 
(potential and kinetic) and an entropic contribution. (It 
is common practire in molecular mechanics methods to 

consider the relative stability of different geometries 
solely in terms of a minimum potential energy criterion; 
the elastic constants are then calculated from the changes 
in potential energy upon deformation, corresponding to 
zero point elastic constants.) We take as our starting 
point the second derivatives of the Helmholtz free 
energy, A, with respect to deformation strain of a small 
volume element Vo: 

A = U - T S  (1) 

dA = d U -  T dS for isothermal deformations (2) 

The elements of the fourth order elastic stiffness tensor, 
CLMNK, are defined as: 

(~2A/~/SLM 0eNKIo = VoCLMNK (3) 

where the elements of the Lagrangian ('material') strain 
tensor ELM are defined using: 

3 

28LM = ~UL/(~X M Jr ~UM/~X L .2f- E OUl/6~XL OUl/(~XM (4) 
1=1 

u=(ul,u2, u3) is the displacement vector describing 
deformation. The subscript o indicates the minimum 
internal energy (i.e. reference) structure. The subscript 
LM refers to change of the L surface (i.e. a plane 
perpendicular to the L direction) in the M direction. For 
small deformations, we may neglect the terms of the 
second order in displacement. 

Consider first an arbitrary elastic solid subjected to an 
arbitrary isothermal small deformation. Expanding the 
internal energy U into a Taylor series about the 
undeformed state and neglecting terms higher than 
second order, one obtains an expression based on the 
formulation of Weiner ~5 and similar to that derived by 
Theodorou and Suter 16 for the difference in internal 
energy per structural repeat unit between the deformed 
state and the ground state: 

dU = Ud¢ f - -  U o 

dU = ELMMru(O'LM/Po + Cr TTLM)eLM 

-'k ~,LM~NK(Mru/Po)[CLMNK- T(OCLMNK/~T)]eLNISNK 

(5) 
Here Po is the density, M,, is the molar mass of the repeat 
unit, and C, is the heat capacity at constant strain. The 
elements gem of the material stress tensor and VLM of the 
Griineisen tensor are defined by: 

OA/Oe.LMI[LM], o = VoffLM (6) 

OS/~eLMIILM], . = 7LMCePoVo (7) 

In our notation, the subscript [LM],o signifies that all 
variables, temperature inclusive, except for that indicated 
within the parentheses are held constant. This notation 
will be simplified in the following to the reference 
structure subscript o, with variation of only those 
elements indicated by partial derivatives implied. In our 
simulations the zero-strain dimensions are included as 
variables in the energy minimization. The energy is, 
therefore, minimized with respect to density; hence the 
first term in equation (5), the internal residual stress 16, 
is zero. The second term reflects the connection between 
the elastic stiffnesses and the second derivatives of 
internal energy with respect to strain. To assess the 
relative importance of the contributions of internal 
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energy and entropy to the elatic constants, the second 
derivative of Helmholtz energy with respect to strain is 
evaluated: 

VoCLMNK = 02A/88LM 8~NKIo = 02 U/88LM 8~NKIo 

- -  T O2S/SeLM 8eNK[o (8)  

Entropic effects are relatively unimportant if: 

I T(~2S/~3¢LM O~NK)Io/(82A/OeLM 8eNK)Io[ << 1 (9) 

o r  

I T(SCLMNK/~3T)/CLMNK]o] = 10 In CLMNK/8 In TIo[ << 1 (10) 

Evaluation of this inequality requires data for the elastic 
stiffnesses as functions of temperature at constant strain 
levels. Because such data at constant strain is generally 
difficult to obtain, this criterion has been re-expressed in 
terms of constant stress derivatives16: 

l( T/CLMNK)[ (SCLMNK/8 T )[ 

- -  ZLMZNK TIXNK(SCLMNK/SGLM)I[LM],a;T']I<< 1 (11) 

Here, the subscript a indicates constant stress derivatives, 
while [LM] ,a  indicates constant stress except for deriva- 
tives with respect to LM. For  the general crystal lattice, 
where elastic response to imposed stress is generally 
anisotropic, one requires the complete thermal expansion 
tensor ~, expressed alternatively by the Grfineisen tensor 
component 7LM: 

~pQ = (Ce/l/o )~'~'LM SpQLM~L M (12)  

Thus to evaluate the significance of entropic contributions 
to the elastic constants, one generally requires either the 
temperature coefficients at constant strain or the tem- 
perature coefficients at constant stress and the elements 
of the thermal expansion or the GriJneisen tensor. 
Unfortunately, the complete thermal expansion tensor 
or the Grfineisen tensor are rarely available for the 
anisotropic solid. One must usually settle for a few select 
elements, typically the diagonal elements, of either tensor. 

With respect to the particular case of the stiff chain 
polymer, Ii et al. in a series of papers 1v-19 reported lattice 
thermal expansion data and some thermomechanical 
properties for PPTA and PBA aramid fibres obtained 
by means of X-ray analysis of the crystal lattice spacings 
under given axial (c-axis) loadings. Relevant properties 
which may be deduced from this work are reproduced 
in Table I. Based on these values, we may calculate the 
stiffness criterion for 82A/8823, assuming that only the 
axial stiffness constant C3333 is significantly affected 
by the introduction of an axial stress 033. In the second 
term of equation ( l l ) ,  one would expect that for such 

Table 1 Thermomechanical properties of PPTA and PBA a 

PPTA PBA 

cql (K -1) 8.3×10 -5 7.0x10 5 
~22 (K 1) 4.7×10-5 4.1x10-5 
~33( K 1) _2 .9  x 10-6 _7 .7  x 10-6 
C3333 ~ 1/$3333 (at 298 K) (GPa) 168 188 
6nC3333/(~T[a33 =0.5GPa --0.181 --0.247 

--83233 ~S3333/OT[a33=O.5GPa 
(GPa K- 1 ) 

~C3333/~o-3313oo K 59 32 
-2 S 8S ~3a -- 3333 3333/ 331300K 

a F r o m  Ii et al. iv 19 

oriented chains 8 C 3 3 3 3 / 8 o 3 3  should far exceed all other 
8CLMNK/8aLM due to the deformation of internal bond 
lengths, angles and torsions required by an imposed 
stress in this direction, rather than the deformation of 
weaker intermolecular interactions allowed under stress 
in the other directions; the possible exception in the 
aramid case is 8Cll 11/80"11, which involves deformation 
of hydrogen bonds. However, the fact that C3333 should 
also be much greater than the other moduli, and that 
~11 and ~22 are positive and thus would offset somewhat 
the negative ~33 contribution, should ensure that the 
estimate calculated below is a worst case scenario: 

I(T/C3333)[SC3333/STI,,-- T733 8C3333/Sa33[v][ 

= 0.27 (PPTA) 
(13) 

=0.32 (PBA) 

These numbers imply that the true modulus of PPTA 
fibres is smaller than the value estimated from internal 
energy contributions alone, but is at least 79% of this 
value, while for PBA the corresponding lower limit is 
76%. 

Statistical mechanics of deformation 
Alternatively, in order to understand the contributions 

to the macroscopic thermodynamic properties of changes 
at the atomic scale, we may recast these state variables 
in terms of the canonical partition function for an N body 
system: 

Q(N, V, T ) = ~  exp[-f lEj(N,  V)] (14) 
J 

where fl= 1/kT and the Ej are the total (free) energies of 
the states j available to the system. The thermodynamic 
state variables then become: 

A= - k T l n  Q (15) 

U = kT 2 8 In Q/8TIN.v (16) 

S = kT 8 In Q/8TIN.V + k In Q (17) 

For  a system of distinguishable particles, such as the 
atoms in a crystal lattice, the canonical partition function 
may be approximately decomposed into factors for 
additional treatment by either classical or quantum 
mechanical methods: 

Q(N, V, T ) = q t  .... qrotqvib=QchssQquant (18) 

Now, we choose to treat the crystal lattice in the vicinity 
of its minimum internal energy configuration as a regular 
structure of discrete lattice points at which are located 
the N bodies (or atoms) of the system; each body vibrates 
about its local lattice point. The total internal energy 
may then be expressed as a function of an arbitrary set 
of orthogonal structure-defining variables {s} as a Taylor 
series expansion about the minimum energy configuration 
(s} = (So} (As, 6 (As} - { s -  So}): 

3N 
U({s}) = u({s} = (so})+ Y. OU/SAs,lo AS i 

i=1 

l aN  ~ 
E ~2U/SAsi 63Asjlo As i Asj (19) 

-~-2 i= 1 j = l  

where the first term, the potential energy at the minimum, 
is a function only of the 'soft' variables and will be referred 

tl  p°' and the second and third terms, to hereafter as --min, 
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indicative of structural mobility, are functions of vibratory 
displacements about this static minimum, due either to 
oscillations in such 'hard' variables as bond lengths and 
bond angles or small oscillations in soft variables such 
as bond torsion or interchain distance, which are further 
assumed to be independent of {So}. 

The positions described by the vector of change 
{As} = {0} correspond to the minimum energy configur- 
ation, where by definition for a state in detailed 
mechanical equilibrium DU/O(Asi)lo=O. The quadratic 
term represents a set of coupled harmonic oscillators. By 
next assuming that the crystal behaves as a large 
polyatomic molecule whose atoms occupy lattice points 
connected by 'springs', and introducing normal coordinate 
analysis, one may decompose the system into a set of 
independent oscillators, characterized by 3N (for large 
N) normal mode vibration frequencies v j, each con- 
tributing its own component qvib,j to the quantized 
portion of the partition function. Equating U({s}) with 
the set of energies Ej available to the system in the vicinity 
of the lattice minimum and substituting the independent 
partition functions qvib,j for the component oscillators in 
the quadratic term, one obtains2°: 

3N 
Q(N, V, T) = e x p ( -  t{tl p°t ~ (20) r - -mini  17 qvib,j 

j=l 

where 

qvib,j ---- exp( - flhv/2)/[ 1 - exp( - fihvj)] (21 ) 

For the Helmholtz free energy and its second derivatives, 
this yields: 

3N 
A -- --min//P°t --'4- kT  ~ ln(qvib,j) (22) 

j = l  

~2A/OeLM -- 2 pot 0gNK]o - ~  Umin//~gLM ~gNKIo 
3N 

+ kT  ~ 02 ln(qvibj)/t~eL~ t 0eNKIo (23) 
j=l 

For the calculation of elastic stiffnesses, our interest lies 
in the term 02A/OeLU 8eNzlo = VCLMNK. Clearly, if the 
normal mode frequencies are independent of deformation 
in the small deformation regime, then the second-term 
on the right-hand side vanishes and (t32A/SeLM deNZ) may 
be replaced by 2 pot ((~ Umin/~/~LM ~/3NK), suggesting that thermal 
oscillations make at most a minor contribution to elastic 
response; this is the strict harmonic approximation. Thus 
for evaluation of the significance of contributions of 
thermal vibrations to elastic stiffnesses, one requires 
normal mode vibrational frequencies for both deformed 
and undeformed structures. Applying a criterion for 
significance of thermal motion contributions analogously 
to the one given in equation (9), one finds that the neglect 
of thermal motion is inconsequential if: 

3N 
NokT ~ (~2 l n ( q v i b , j ) / O e L  M OeNZIo/NVoCLMNK< < 1 (24) 

j = l  

o r  
3N 

(No/fi NVoCLMNK) E hfi(½ + A)OEvj/OgLM C3eNKIo 
j=l 

-- (hfi)E(A + A 2) OVj/OeLMIo OVj/OeNK]o<< 1 (25) 

where 

A = 1/[exp(hfivj)- 1] (26) 

Data presented below leads one to assume that: 

(i) OVff8eLulo = Kv, a constant for all j, LM and 
(ii) d2V/OeLM 0eNKlo=0 for all j, LM, NK 

With these assumptions, a simplified criterion is: 
3N 

--(No/fiNVoCLMNK)(hfiK~) 2 ~ (A+A2)<<I (27) 
j = l  

For large N, one may approximate the summation by 
introducing a distribution function 9(v) for the normal 
mode frequencies and integrate over all frequencies: 

-- (No~fiN VoCLMNK)(hfiK~) 2 

x exp(hfiv)O(v)/[exp(hfiv)- 1] 2 dr<< 1 (28) 

where normalization requires that 

fo ~ 0(v) = (29) dv 3N 

It only remains to specify the distribution function 9(v) 
which describes the complete set of individual frequencies. 
Unfortunately, complete distributions are not generally 
available. Most of these frequencies are not due to the 
vibrations of single atoms or a few atoms, but are 
concerted (harmonic) motions of many or all atoms. The 
normal frequencies of a crystal vary from essentially zero 
to some value of the order of 1013 cycles s -1 (ref. 20). 
We may proceed by introducing the same approximations 
for the normal mode vibrations of a crystal as have been 
employed so successfully in the prediction of low 
temperature heat capacities, namely the Einstein and 
Debye approximations: 

Einste& approximation. It is assumed that each normal 
mode has the same frequency v E, i.e. each member of the 
lattice sees the same environment and acts as an 
independent oscillator: 

gE(V) = 3N 3(v -- VE) (30) 

which, when substituted into equations (28) and (29), 
yields: 

I -  (3No/fiVoCLMNK)( hfiKv)2 

X {exp(hflvE)/[exp(hflVE)--132}l<<l (31) 

The lower v E is, the larger is the left-hand side of equation 
(31). 

Debye approximation. It is reasoned that only low 
frequencies, up to a characteristic frequency VD, are 
important; those long wavelength oscillations are insen- 
sitive to the detailed atomic character of the solid and 
may be calculated by assuming that the crystal is a 
continuous elastic body. This leads to: 

gD(V) = 9Nv2/v 3 0 <<. v <~ v D 
(32) 

=0 P>PD 

which, when substituted into equations (28) and (29) and 
making the substitution x = h fir, leads to: 

- (3No/fiVoCLuNz)(K2/hfi va) 

f ]  ~vD dx x x 2 exp(x) /[exp(x)-  1] 2 << 1 (33) 
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Table 2 Strain dependence of Raman frequencies in PPTA a 

Frequency (cm- 1 ) (~Yj/(~3 3 (cm - 1% - l ) A q- A 2 ( × 10 4) 

1649.5 - 2.2 __+ 0.2 3.65 
1613.5 -4.4__+0.2 4.33 
1519.2 - 4 . 2 + 0 . 7  6.82 
1330.9 - 3.4 _+ 0.3 16.90 
1280.1 -3 .6 -+0 .3  21.50 
1183.7 0.5 _+ 0.3 34.30 

a F r o m  Galiotis et al. 21 

which may be integrated numerically for a given YD. The 
lower VD is, the larger is the left-hand side of equation (33). 

For our analysis we draw on the work of Galiotis et 
al. 21, who have investigated the strain dependence of the 
Raman frequencies of Kelvar 49 ® fibre, in the range 
1100-1700 cm-1, between 0% and 2% axial strain (/333). 

From their data, the gradients in frequency appear to be 
roughly independent of both frequency and strain. The 
frequencies and peak shifts of six vibrational modes are 
reproduced in Table 2. Hence we assume the simpli- 
fications suggested above [(i)-(ii)], i.e. that the second 
derivatives of frequency with respect to strain are 
essentially zero, and take an average value for K~= 
- 3 c m - 1 % - 1  (i.e. - 3 0 0 c m - 1 ) .  (For this coarse 
approximation, we do not distinguish between the 
magnitude of the constant stress derivatives and that of 
the constant strain derivatives required by equations (31) 
and (33)). At 298 K, hfl = 0.0048 cm, V o is 5.26 x 10- 22 cm 3 
(the unit cell volume), N O is taken to be the 56 atoms for 
PPTA (two repeat units or four monomeric units per 
unit cell) and (kT/VoC3333)=4.66 x 10 -5. 

Estimation of the Einstein and Debye frequencies of 
such a material is difficult. Bondi 22 reports Debye 
temperatures (®D) between 100°C and 400°C for mon- 
atomic solids, which corresponds to v D = k®D/h between 
70 cm 1 and 280 cm-1. Values for glassy polymers are 
on the order of 120°C. Unfortunately, there exist no 
estimates for Debye or Einstein temperatures for poly- 
meric crystals. However, guided by those systems for 
which data is available, we may presume a conservative 
value of ®D=100°C and ®E=0.75®D=75°C, which 
corresponds to VD = 70 cm- 1 and v E = 52 cm- 1. We then 
obtain: 

Einstein approximation: 

(-- 3No/flVoCLMNK)(hflKv)2{exp(hflVE)/[exp(hflVE)-- 1] 2} 

=--0.259 (34) 
Debye approximation: 

-- (3No/fl VoCLMNK)(K2/hflv~) 

f f  flvD 
X X 2 exp(x) /[exp(x)--  1] 2 dx = -0.143 (35) 

For both types of approximations, the analysis indicates 
that the elastic constants are overestimated using potential 
energy only. The true modulus of PPTA fibres, according 
to these considerations, is between 74% and 86% of the 
values computed neglecting thermal motion. 

The statistical mechanical considerations presented 
here, together with the thermodynamic analysis laid out 
above, leads to the contention that entropic and kinetic 
energy contributions to the elastic moduli in fibrous 
polymer crystals are not negligible and may in fact (in 
aramid fibres) amount to as much as 15 30% of the total 

response to axial deformation. In the following, we will 
adhere to calculations of the elastic constants from 
changes in the potential energy for deformed structures, 
adjusting these values a posteriori to estimate the 'true' 
moduli. 

METHOD OF CALCULATION 

In the case of static crystals fully minimized in potential 
energy with respect to both intramolecular and inter- 
molecular degrees of freedom, the first order coefficients 
of equation (5) are all zero (i.e. there is no internal residual 
stress). To obtain the 21 independent elastic coefficients, 
CLMNK, 21 deformation 'experiments' need be performed. 
These were selected as follows: three uniaxial tensions 
(ELL); three simple shears (eLM); three biaxial tensions 
(eLL, EMM); three dual component shears (eLM, ENK); and 
nine combined tension/shear (eLL, ENK). 

The first two types of deformation require the minimum 
energy configuration plus two deformed configurations 
each (+e), from which an estimate of CLMNK may be 
calculated using a three-point formula for t32 U/~ELM C3ENK. 
The other three types each require an additional two 
deformed configurations (e.g. + eLM, + ENK and -- eLM, 
--eNK), which in combination with the previous deformed 
structures yield estimates of CLMNK through use of a 
seven-point formula for O2U/t3/3LM OENK- 

From equations (5) and (8), in the absence of entropic 
contributions, the elements of the compliance matrix are 
obtained as 

CLMN K = (po/Mru) ~2 U/(~EL M O/3NK (36) 

Because of the feature of chain alignment within the 
model, deformation parallel to the chain propagation 
direction and lateral to it may not be treated identically. 
Tensile deformation in the latter case is primarily a 
function of intermolecular packing parameters and may 
be imposed by appropriately straining the packing 
geometry. Tensile deformation along the chain direction 
is an implicit function of intramolecular parameters and 
may be imposed by applying a forcing function to cause 
deformation of the chain axis. On the other hand, simple 
shear in a plane containing the chain axis may be induced 
by altering the intermolecular description, while shear in 
a plane cutting the chain axis is precluded by formulation 
of the model, which defines the z-axis of the global 
coordinate system as the alignment direction of the chain 
axes. In the actual 'experiments' we impose deformation 
through the application of engineering strain components 
eLM, which need not compose a symmetric matrix; the 
resulting rigid body rotations implied by the non- 
symmetric strain matrices have no bearing on the 
calculated internal energy of the deformed body. General- 
ized forms of the engineering strain matrices for one 
example each of the five imposed deformations are as 
follows (where the eij are small values): 

Uniaxial tension ( x - a x i s ) e = l O  0 0 0 

Simple shear e=  f i  el20 i ]  
(yz-plane, y-direction) 0 
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Biaxial tension 

(x-axis, y-axis) 

Dual component shear 

(yz-plane, y-direction; 

yz-plane, z-direction) 

Tension/shear 

rexx 0 
°=L; e220 

Ii e e =  0 

0 

[e x e12 il 
(x-axis; e = 0 

yz-plane, y-direction) 0 

Equivalent tensorial strain elements may readily be 
determined (i.e. eLL =eLL and 1 eLM=eML=~eLM). By im- 
posing a strain and reminimizing with respect to intra- 
molecular and intermolecular degrees of freedom, we 
allow the components of the structure to respond in a 
non-affine manner; this process is conceptually consistent 
with a realistic interpretation of atomic rearrangement 
in a system involving bonded and non-bonded atoms. 

ELASTICITY OF PPTA 

Chain description 
The model used for PPTA is a modification of the 

simple chain description used previously to identify 
optimal crystal structures 14. The latter described the 
single chain using fixed bond lengths, hexagonal planar 
phenyl rings, and planar sp 2 bond orientations at the 
amide carbons and nitrogens, requiring only six torsional 
degrees of freedom and eight valence bond angle degrees 
of freedom. This chain description is shown in Figure la. 
This model contains sufficient 'internal' freedom for the 
chain to adjust to its preferred packing configuration but 
is too 'restricted' to respond realistically to strains 

Table 3 Comparison of the two chain descriptions used for structure 
and mechanical property calculations 

For mechanical 
For structure property 
calculations estimation 

Number of degrees 22 38 
of freedom 
Bond length ~ (A) 

C-C~. x (11, Is) 1.50 (fixed) 1.504, 1.508 
Car, l-Car,2 (17, 19) 1.40 (fixed) 1.404, 1.402 
C,,.2-C=,3 (lo, l~o) 1.40 (fixed) 1.400, 1.396 
C - N  (l 3, 16) 1.39 (fixed) 1.385, 1.385 

•Car,  l -N  (12,14) 1.41 (fixed) 1.398, 1.400 
Bond angle = (degrees) 

Car.6~ar.l-far.2 (09, 0~0 ) 120 (fixed) 119.4, 120.3 
C=~,I-C=O (02) 118.9 118.9 
N - C = O  (0a) 119.2 119.3 
C~r, r C - N  (01, 07) 122.0, 121.9 121.8, 122.0 
C - N - H  (04) 123.1 119.0 
C~r.I-N-H (06) 118.4 118.1 
Car, l-N---C (03, 0s) 123.1,122.7 122.9, 122.6 

Bond torsion (degrees) 
C,r.2-Car, 1--C-N 
Car,2~Car, 1---C:O 
Car . I -N-C~O 
Car, t-C-N--Car.r 
Ca,.2-Ca,, 1-N-C 
C~r,2-Ca,, x -N-H 
Ca,, 1 -C-N-H 

Intermolecular b 
A (A) 
B (h) 
a (degrees) 
/3 (degrees) 
7 (degrees) 
co 1 (degrees) 
0) 2 (degrees) 
f~ 

Density (g cm -3) 
Cohesive energy 

(kcal mol-  1 ) 

(q~t, q~3) --26.0, - 153.7 -25.7 ,  - 159.0 
(q~2) (~b 3 + 180 °) 19.0 
(~b9) (tblo+180 °) ' 172.0 
(~5, ~bao) 5.6, - 6 . 6  5.8, - 6 . 9  
( ( ~ 6 ,  t ~ a )  - -  137.3, -43.1 - 134.6, -44 .4  
(q~7) (q~a + 180°) 137.8 
(~b4) (~b 5 + 180 °) - 167.8 

4.78 4.78 
4.90 4.93 
90.3 89.7 
89.9 89.5 
62.1 61.5 
101.4 99.5 
--79.5 -81 .4  
0.45 0.45 
1.46 1.46 
38.3 37.8 

a Refer to Figure  1 for explanation of symbols 
b The precise meanings of these intermolecular parameters have been 

previously explained in detail in reference 14 

(a) 

"\ 
o °s. 

£o) 

/, t,0 

/, \ /, 
0 l z T " - ' - - x  N N l, 

/ ~ 0 

I. 
l:, ~ 1 ~ =  1. = 11~ = Is "= 17 

1, = l,  

t, \ ~ " - ~ /  t, 
O, = Ob = O. = 0 ,  = T¢-0912 

4 
0o : 09 

Figure 1 Segment of PPTA with all torsion angles in their zero 
positions. (a) Type I chain description for determination of multichain 
packing behaviour. (b) Type II chain description for determination of 
mechanical properties 

imposed along the chain axis. In the modified chain 
description, illustrated in Figure lb, the planarity con- 
straint at the amide nitrogens and carbons is relaxed, 
resulting in 10 torsional degrees of freedom. The rigid 
phenylene ring has been replaced by a planar symmetric 
ring which may be described using only one bond angle 
and two bond length degrees of freedom. Finally, the 
bonds in the chain backbone were allowed to respond 
to deformation, adding six more bond lengths to the 
degrees of freedom, for a total of 10 bond angle and 10 
bond length degrees of freedom for the PPTA repeat unit. 
Valence force field potentials 11 were introduced to 
describe the potential energy of these deformations, with 
the equilibrium positions chosen so as to reproduce the 
original chain upon energy minimization. Table 3 shows 
the correlation between corresponding values for the 
above-mentioned degrees of freedom at the minimum 
energy cell configuration for one of the previously 
calculated PPTA structures (that denoted PPTA structure 
3 in ref. 14; this structure is very similar to the PPTA 
modification I first reported by Northolt 2 3) using the two 
chain descriptions. The intermolecular degrees of freedom 
remained unchanged (i.e. two periodicity lengths, three 
periodicity orientation angles, two setting angles and one 
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translational displacement). The cohesive energy of this 
structure calculated using the second chain description 
is within 2.1 kJ mol-  a of that obtained using the simpler 
description; this lends further confidence to the accuracy 
and adequacy of the simpler version for structure and 
cohesive energy calculations. 

It remains to define the coordinate axes of mechanical 
deformation: the x3-axis of deformation corresponds to 
the c-axis of the pseudocrystal, along which the chain 
axes are aligned; the x~-x3 plane contains the ac-facet 
of the pseudocrystal wherein lie the hydrogen-bonded 
sheets; the xz-axis and the bc-facet are defined by 
orthogonality and crystal periodicity relationships, 
respectively. 

Determination of crystallite compliance and stiffness 
matrices 

The first structure considered is that denoted 14 PPTA 
structure 3. Initially, the multichain structure was 
subjected to _+0.4% tensile strains along the crystallo- 
graphic c-axis (the chain axis), with all other internal and 
external degrees of freedom allowed to adjust (i.e. a 
'constant pressure' deformation). The resulting E33 
modulus is 303 GPa;  the resulting densities of the 
strained structures deviated from the strain free value by 
_+ 0.16%, indicative of a slight dilation (compression) of 
the lattice upon extension (compression). 

In a second set of experiments, the full complement of 
21 deformations was performed, allowing only degrees 
of freedom internal to the unit cell to relax (i.e. the 
optionally strained lattice dimensions a, b, c and interaxial 
angles ~, / /and y were fixed). The complete stiffness matrix 
is presented below (eqn. (41)) in the 6 x 6 Voigt format. 
In this convention, only one subscript is required to 
identify the appropriate element of stress or strain, and 
two for the corresponding stiffness and compliance 
matrices (e.g. eL=eLL for L = I ,  2, 3; and /14=2/323 , 

/35 = 2/3~ 3, e6 = 2el 2). The magnitudes of imposed strains 
were selected to be large enough to give numerically 
significant differences in potential energy (i.e. eL =0.4% 
for L = 3  and 0.8% for L = I ,  2; eL= 1.6% for L = 4 ,  5, 
6); larger imposed deformations tax the validity of the 
assumption of material elasticity and the utility of the 
simple three- and seven-point approximation formulae. 
Deformations imposed by e33 and e23, representing 
roughly the extremes of the range of elastic response, 
were checked for various strain levels; the calculated 
stiffness elements remained consistent up to 3.2% strain 
or higher. Up to 1.6% deformation, removal of the 
imposed deformation and reminimization of potential 
energy with respect to the internal coordinate degrees of 
freedom gives back the original undeformed configur- 
ation, ensuring that the strain levels employed are within 
the domain of elastic response. The resulting precision 
in the reported values are on the order of +5%,  or 
4- 1-5 GPa. 

The compliance matrix is calculated by inversion of 
the stiffness matrix: 

S = C -  1 (37) 

From the compliance matrix are calculated the Young's 
moduli El, the shear moduli Gi, and the first six Poisson's 
ratios vii: 

E i = 1/Sil; i=  1, 2, 3 (38) 

Gj=I/S,; i=4 ,  5, 6 and j = i - 3  (39) 

vii = - -  Sij/Sjj; i, j = 1, 2, 3 (40) 

The full stiffness and compliance matrices and the derived 
moduli are found to be: 

C =  

S =  

=40 23 13 0.1 1.2 

31 41 1.5 3.2 

360 0.3 5.0 

5.5 3.7 

22 

D 

"4.8 -4 .2  0.35 

7.5 -0 .74  

0.37 

m 
x 10 -z GPa-1  

2 . 4 "  

1.9 

11 

2.7 

3.2 

7.5 

1.8 

-2 .5  

0.50 

25 

GPa (41) 

0.21 -1 .8  

-0 .52  1.7 

0.02 - 0.66 

-2 .8  -8 .5  

5.3 - 1.2 

18 

(42) 

E~ =21 GPa E 2 = 13 GPa E 3 =270 GPa 

G~ =4.0 GPa G 2 = 19 GPa G 3 = 5.6 GPa 

Vlz =0.55 v21 =0.86 v13 = -0 .94  

v31 = -0 .07  v23 =2.01 v32 =0.10 

(43) 

The obvious trends to be noted here are that the 
transverse moduli E1 and E 2 a r e  roughly 5-8% of the 
axial modulus E 3. As was suggested previously from a 
detailed consideration of structural energetics 14, the two 
transverse moduli are of comparable magnitude; E1 is 
slightly larger than E 2 due to the stretching of hydrogen 
bonding interactions in the former. The value calculated 
for G 2 is comparable to that of E1 and is indicative of 
the expected resistance to shear deformation of the 
hydrogen-bonded sheet structure. The shear moduli GI 
and G 3, corresponding to motions of the hydrogen- 
bonded sheets of chains parallel and perpendicular, 
respectively, to the chain axes, are roughly 1-2% of the 
axial modulus. The complete stiffness and compliance 
matrices are positive definite and satisfy the requirement 
for positive strain energy 24 (i.e. W = ~TC~ = aTsa ~ "  0 )  for 
an arbitrary small deformation imposed by e or a. 

Estimations.for alternative allomorphs 
At least one other crystal allomorph has been isolated 

by precipitation from acid solution into water under 
controlled conditions of polymer concentration and 
post-precipitation heat treatment 15. Other energetically 
stable packing geometries may also exist to lesser extents 
in the actual polymer fibre. In consideration of these 
possibilities, we repeated the above procedure for two 
additional structures suggested by the model analysis. 
Structure 4 of reference 14 closely resembles structure 
3 in its unit cell geometry, with the distinction that 
amide dipoles in register in neighbouring sheets of 
hydrogen-bonded chains are alternating in direction. 
Structure 5 of reference 13 represents that calculated 
geometry which most closely approximates the second 
crystal polymorph reported in the literature. (However, 
it should be noted that none of the model structures 
derived by minimization of total potential energy replicate 
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this reported structure to the extent that structure 3 
resembles modification I.) Shown below is a summary of 
the stiffness and compliance matrices for these two PPTA 
structures; in each case, these matrices satisfy the 
requirement of positive strain energy of deformation: 

variation in tensile modulus, for example, would be 
contingent upon the details of chain conformation, which 
in turn depends upon the intermolecular forces impinging 
upon the chain from neighbouring units. 

PPTA structure 4: 

55 30 0.5 

33 26 

390 
C =  

S =  

"12 - 1 6  0.5 

24 - 0 . 8  

0.3 

× 10 -2 G P a - 1  

g 1 = 8.5 GP a  

G1 = 6.9 GP a  

P12 =0.6 

v31 = - 0 . 0 4  

PPTA structure 5: 

"55 18 0.6 

60 12 

290 
C =  

"8.7 - 2 . 0  

2.2 

S =  

X 10 - 2  GP a  -1 

1.4 7 .2  

- 7 . 7  - 6 . 4  

- 9 . 6  - 10 

19 - 5.2 

22 

- 1 0  - 1 0  

15 15 

- 0 . 3  - 0 . 3  

15 11 

15 

E2 =4.1 GPa  

G 2 = 6.9 GPa  

v21 = 1.3 

v2a =0.03 

0 . 4 "  

4.0 

3.1 
GP a  

2.4 

- 3 . 0  

19 

2 . 6 "  

- 4 . 2  

0.1 

- 3 . 1  

- 1.9 

6.1 m 

E a = 350 GPa  

G 3 = 16 GPa  

via =2.7 

~'32 = 0.03 

18 9.1 

2.0 1.9 

9.0 36 

9.4 1.5 

20 

(44) 

(45) 

(46) 

- 0 . 8  - 1 7  

- 0 . 3  3.5 

0.7 - 1.6 

44 

- 4 . 9 "  

- 2 . 9  

30 
GPa  

2.6 

- 2 . 4  

20 

- 3 . 6  2.4" 

1.0 0.0 

- 1.5 - 0 . 8  

6.1 - 6 . 1  

9.0 1.8 

7.7 

E 1 = 12 GP a  E 2 =45 GPa  E 3 = 150 GPa  

G1 =2.3 GP a  G 2 = l l  GPa  G3=13 GPa  

Vi2 =0.9 VEi =0.2 •13 = --1.2 

vaa -- - 0 . 1  v23 =0.5 P32 --0.1 

(47) 

(48) 

(43) 

Significant differences between the elastic properties of 
these different crystalline microstructures is suggestive of 
the considerable variation in observable behaviour for 
PPTA where different or mixed forms are present. The 

Isolated chain compliance and comparison to 
crystallite compliance 

For comparison to calculations in the literature, the 
isolated chain was also subjected to fixed axial strains of 
___0.4%, which yielded a chain modulus of 195 GPa.  By 
comparison, Tashiro et al. 11 calculated a value of 
182 GPa  for the isolated chain modulus (referred to there 
as the crystallite modulus). Fielding-Russell 26 obtained 
a value of 200 GPa  for the all-trans planar conformation. 
The observed tensile modulus falls in the range 120- 
200 GPa  11'27-29. It is significant that whereas the tensile 
stiffness C3333 calculated for the single chain is in good 
agreement with previous estimates, that estimated for the 
packed structure is considerably higher, in both variable 
and constant strain simulations (i.e. 303 and 360 GPa,  
respectively). This is especially puzzling in light of the 
widespread notion that chain packing should have no 
significant effect o n  C3333 , since the interactions con- 
tributed by the lattice act essentially perpendicular to the 
chain axis i2'3°. In order to determine the source of this 
difference, the component breakdowns of energy contri- 
butions in both the single chain and packed chain 
estimations were computed. For  this purpose, the intra- 
molecular contribution was defined as that change in 
energy attributable to changes in intramolecular variables 
upon deformation, which includes bond stretching, bond 
angle bending, torsion angle rotation, intramolecular van 
der Waals interactions and intramolecular Coulombic 
interactions. For  the packed structure, intermolecular 
interaction contributions were defined as changes upon 
deformation attributable to intermolecular van der Waals 
and Coulombic interactions. The contributions to changes 
in energy upon _+0.4% strain along the c-axis (the chain 
axis) are shown in Table 4. 

Study of these values in the case of the isolated chain 
indicates that the minimum energy conformation is the 
result of a balance between interactions tending to 
promote chain contraction (i.e. bonds and valence angles) 
and others promoting chain elongation (i.e. torsions and 
non-bonded interactions); thus small deformations are 
accompanied by trade-offs in these interactions. In the 
packed chain structure, however, the presence of inter- 
molecular interactions greatly alters the balance. Due to 
impinging intermolecular interactions, the chain confor- 
mation is no longer the minimum energy conformation 
represented by the isolated chain, and as a result the 
trade-off between intramolecular contributions concur- 
rent with axial strain are no longer balanced, but tend 
to pay a higher penalty for extension than witnessed 
previously. On the other hand, intermolecular inter- 
actions, primarily the Coulombic interactions, actually 
favour extension, thus offsetting the higher penalty for 
conformational extension. This trend may be understood 
as follows: extension leads to a net separation of atom 
centres, which decreases the cohesive energy contri- 
butions due to van der Waals interactions. However, 
charge interactions in the packed structure are not 
randomly oriented, but are so arranged such that 
attractive interactions predominate. In particular, species 
of opposite charge are preferentially located closer 
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Table 4 Partitioning of strain energy (kcal mol- 1 ) among the degrees of freedom of the structure for isolated chain and packed chain simulations 

Tensile strain (%) AEbo,, d AEa.,l AEtors AEvdw AEcoul 

Isolated chain 
Intramolecular 

+ 0.4 0.43 0.46 --0.21 - 0.60 - 0.007 
- 0.4 - 0.24 - 0.34 0.58 0.002 0.037 

Packed chains 
Intramolecular 

/~E in t r a  

0.078 
0.042 

m E i n t r a  

+ 0.4 0.42 0.49 - 0.007 - 0.69 - 0.022 0.19 
- 0.4 - 0.33 -0.39 0.093 0.65 0.040 0.061 

Intermolecular 
A E i n t e r  

+ 0 . 4  - - 0 . 0 3 0  - -  0 . 1 0  - -  0 . 0 7 4  

-0.4 . . . .  0.032 0.075 0.042 

AEto ta l  

0.12 
0.10 

together. Even an affine extension imposes larger absolute 
changes in charge separation for those species which are 
farther apart, i.e. species of like charge, resulting in a net 
improvement of the total Coulombic interaction. Non- 
affine deformations such as performed here will probably 
be even more preferential in distributing charge separ- 
ation. In the sum, both intra- and intermolecular 
interactions contribute to resist compression, while the 
advantages gained in intermolecular interaction only 
partially offset the resistance of chain conformation to 
extension. The net result is the increase in the stiffness 
constant C3333. This illustrates not only the importance 
of intermolecular contributions to resistance to defor- 
mation, but the complexity of changes in intramolecular 
response which accompany the changes in conformation 
that result from interactions with neighbouring chains. 
The computed variation of E 3 with crystal structure 
witnessed above (the values span a factor of 2.2) is clear 
indication of the importance of packing even on C3333. 

FIBRE M O D U L I  

Derivation of fibre symmetry relations 
One may derive estimates for the moduli of the 

polycrystal mosaic present in the fibre from the complete 
elastic constant matrices by applying assumptions con- 
cerning the crystal packing morphology and the distri- 
bution of stress and strain over the packed crystals. For  
this purpose, we treat the fibre as a polycrystalline 
structure possessing perfect alignment of the molecular 
axes along the fibre axis, but random orientation of the 
crystals in the planes lateral to the fibre axis. We also 
ignore the effects of any inter-crystalline matrix material. 
Assuming that an imposed strain is uniform for all 
elements of the polycrystalline fibre, one may calculate 
the fibre stiffness matrix as the cylindrical average of the 
crystalline stiffness matrix. This matrix is inverted to 
obtain the fibre compliance matrix and the elastic moduli 
as previously described; this procedure yields the volume 
average of stiffnesses, or Voigt limit, which provides an 
upper bound to the estimation of elastic constants. 
Alternatively, one may assume that stress, rather than 
strain, is uniform, resulting in the analogous volume 
average of compliances, or Reuss limit. These two 
assumptions, while neither being exactly correct, provide 
the upper and lower limits to the elastic constants for 

the cylindrically symmetric polycrystal 'composite', within 
which the true elastic constants must lie 3a 

For the case of fibre symmetry the contribution to 
compliance from an individual crystal is expressed as a 
function of crystal orientation (f~ denotes the angular 
position of the crystal) in tensorial form as: 

Cn = TnTnCTTT T (50) 

where Tn is the rotation matrix (for the fibre axis parallel 
to the z direction): 

[ c ° s ~  sinf~ i ]  
T n =  - s i n f 2  cos 

0 0 

(51) 

Denoting the column array of the elements of a matrix 
as { }co~, the elements being arranged in 'reading' order, 
i.e. by rows, and using ® to signify the direct matrix 
product, one may rewrite equation (50) for Cn as: 

{Cn}co,= (TD® TD ® TD ®Tn){C}co, (52) 

or, using the reduced notation 32 where T xp indicates 
the self-direct product of degree p of the matrix T 

{Co} = T~4{C} (53) 

Then the cylindrical average over f2 becomes: 

({Ca} >= (1/2~) T~4{C} dn= (T~4>{C} (54) 

Upon integration, one obtains 41 non-zero terms in 
(T~a4), of which 21 are independent. Taking advantage 
of the symmetries in C, one can derive simple equations 
for the six independent terms of the cylindrically averaged 
stiffness matrix (Cn) ,  which may be collected into Voigt 
form as shown below: 

(CD> = 

where 

"A B C 

B A C 
C C F 

0 

E 

E 

D 

Voigt average (55) 

A = (1/8)(3C 11 at- 3C22 + 2C12 + 4C66) 
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B = (1/8)(C11 + C22 + 6C12 - -  4C66) 

C = (1/2)(Ci3 + C23 ) 

D = (1/8)(C11 + C 2 2  - -  2C12 -1- 4C66)  

E = (1/2)(C44 + C55) 

F=C33 

Similarly, the cylindrically averaged compliance matrix 
may be expressed as: 

( S . )  = 

"A B C 

B A C 

C C F 

E 

0 E 

D 

Reuss average (56) 

where 

A = (1/8)(35i i + 3522 -F 2512 + $66 ) 

B = (1/8)(S11 + $22 "at- 6S12 - $66) 

C = (1/2)(S 13 + $23) 

D = (1/2)(S 11 + $ 2 2 -  25:2 + $66) 

e = (1/2)($4, + Sss) 

F = S 3 3  

Voigt and  Reuss  limits f o r  P P T A  

Applying this approach to the crystallographic stiffness 
and compliance matrices given previously, one obtains 
the upper (Voigt) and lower (Reuss) limits for the fibre 

elastic constants. In Table 5, these constants are listed 
for PPTA structure 3. Also shown are the available 
experimentally determined moduli for PPTA (Kevlar) 
fibres, as well as the results of calculations reported by 
Northolt  and van Aartsen using bond deformation 
models 12. Values for G 3 and v31 are not independent, 
but may be determined easily by the relations: 

G3 = 1E1/(1 -[- 1)12) (57) 

V31 = vl3E1/E 3 (58) 

The values calculated for the PPTA structure 3 exhibit 
considerable spread between the upper (Voigt) and lower 
(Reuss) bounds. The values for all moduli tend to be 
somewhat higher than the experimentally measured 
values. This may be expected due to the idealization of 
orientation and crystallite packing in the calculated 
estimates, as well as likely defects and structural imper- 
fection which would lower the experimentally determined 
values from their theoretical maxima. Aftei" taking into 
consideration entropic corrections, the calculated lower 
bounds for E 3 and Gi may be as low as 220 and 4.1 GPa,  
respectively, in excellent agreement with experimental 
values. 

Table 6 lists the fibre moduli calculated for two 
additional predicted structures of PPTA (structures 4 
and 5). One observes the consistent trend in moduli: 
E 3 > E i > G  i. The differences in the values for the 
predicted moduli of each structure again suggest the 
potential for considerable variation in bulk properties, 
contingent upon the polymorphic composition of each 
sample. 

Table 5 PPTA fibre elastic constants (GPa): theoretical (structure 3) and experimental 

Predicted 
Voigt Reuss range = Experiment Northolt b 

Extensional modulus (E3) 
Transverse modulus (Ea, E2) 

Torsional modulus (G1, G2) 

Extensional Poisson's ratio (ha, V23) 
Transverse Poisson's ratio (vl2' v21 ) 

330 270 220-290 120-20(Y - I  220 

22 6.6 5.2-19 - 16-29 g 

14 5.2 4.1-12 2c, 0.95-2.2 h 2.5-5.7 g 

0.46 0.54 - - - 

0.60 0.66 - - - 

"After correction for entropy contributions, upper bound is 87% of the Voigt limit and lower bound is 79% of the Reuss limit 
b From Northolt and van Aartsen ~2 
c From Allen 29 
d From Tashiro et al. H 
e From Gaymans et al. 27 

Y From Kwolek et al. 2s 
g Based on the assumption that linear hydrogen bonds are the dominant interactions between chains 
h From Knoff 33 

Table 6 PPTA fibre theoretical elastic constants (GPa): structures 4 and 5 

Structure 4 Structure 5 

Predicted Predicted 
Voigt Reuss range a Voigt Reuss range a 

Extensional modulus (E3) 390 350 270-340 

Transverse modulus (El, E2) 39 7.9 6.2-34 

Torsional modulus (G1, G2) 20 6.7 5.3-18 

Extensional Poisson's ratio (V13 , V23) 0.2 2.1 - 

Transverse Poisson's ratio (v12, v21) 0.5 0.8 - 

290 150 

52 22 

15 3.8 

0.1 --0.3 

0.3 0.2 

120-250 

17-45 

3.0-13 

a After correction for entropy contributions, upper bound is 87% of the Voigt limit and lower bound is 79% of the Reuss limit 
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C O N C L U S I O N S  

In a previous  paper ,  we have e m p l o y e d  the me thods  of  
molecu la r  mechanics  for a de ta i led  s tudy of  the solid 
state s t ructure  of  P P T A ,  a stiff chain  po lymer .  F r o m  
these results,  we have now per fo rmed  de fo rma t ion  
' exper iments '  of  the m i n i m u m  poten t ia l  energy s t ructures  
in o rde r  to s imulate  the elast ic  response  of the po lyme r  
pseudocrys ta l .  These ca lcula t ions  p rov ide  the necessary 
in fo rmat ion  to es t imate  the elastic m o d u l i  of  bo th  the 
single crysta l  and  the or ien ted  fibre in the l imits of 
uni form stress and  uni form strain  t h r o u g h o u t  the fibre. 
Ca lcu la t ions  for several  p o l y m o r p h s  of  P P T A  suggest  
that  elast ic  behav iou r  depends  s t rongly  upon  the detai ls  
of the crys ta l  s t ructure.  O u r  c o m p u t a t i o n s  suggest  tha t  
the large in te rmolecu la r  in te rac t ions  present  in the P P T A  
system can have a significant effect on the long i tud ina l  
as well as the t ransverse  modul i ,  resul t ing in cons iderab le  
d i screpancy  between the results of single chain  and  
packed  chain  es t imat ion  procedures .  I t  also appears ,  
based  on simple es t ima t ion  p rocedures  using the l imited 
avai lable  exper imenta l  da ta ,  that  en t rop ic  con t r ibu t ions  
to the elastic modu l i  at  r o o m  t empera tu re  are  significant 
and  con t r ibu te  to a d o w n w a r d  ad jus tmen t  of the 
theore t ica l  elastic cons tan ts ;  for the tensile modu lus  of 
the fibre they are  ~ 1 5 - 3 0 %  of the to ta l  value.  The 
a p p a r e n t  success of  single chain  ca lcula t ions  to es t imate  
the fibre modu lus  are,  in our  j udgemen t ,  the result  of 
c om pensa t i on  of the cons iderab le  effects of two simplifi- 
ca t ions:  the neglect  of pack ing  in terac t ions ,  which leads 
to unde re s t ima t ion  of  the modu lus ,  and  neglect  of  the 
con t r ibu t ions  of  en t ropy ,  or  the rmal  mo t ion ,  which leads 
to overes t imat ion .  
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